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TWO-BODY L I N E A R  GUIDANCE hlATRICES 

1. SYMBOL TABLE 

General Notation 

An underlined lower- case le t te r  represents  a column 

vector. 

A capital le t ter  with an  as te r i sk  over it represents  a 
matrix.  

A superscr ipt  T following a vector o r  a matr ix  indicates 

the transpose of the vector or matrix.  

A superscr ipt  -1 following a square matr ix  indicates the 
inverse of the matrix.  

Svmbols 

a 
e 
d e  
E 
f 
F 

- 

.I, ..- 

Fm 

h 
.Ir 

Hij 

i 

6 i  

.b 

TN 
Jij 

semi-major  axis 
eccentricity of the reference t ra jectory 

variation in grouping of s ix  orbital  elements 
eccentric anomaly on elliptical reference t ra jectory 
t rue  anomaly on reference t ra jectory 
eccentric anomaly on hyperbolic reference t ra jectory 
3-by-6 matr ix  relating components of 6 r to components -m of 6 2  
3-by-3 matr ix  relating components of 6 2  to components 
of 6 r 
orbital  angular momentum per  unit mass  of space vehicle 
6-by-3 matr ix  relating components of 6 - e to components of 
6 r. when 6 r .  is constant 

- 

-J 6 
angle between the actual t ra jectory plane and the reference 
t ra jectory plane 

N-by-N identity matrix 

3-by-3 matr ix  relating components of 6yi to components 
of 6s. when 6 ; .  is constant 

1 J 
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J, 

Kij 

m L 
.4, 

Mmk 

n 
.b ‘0. 

Nmk 
I. 

bN 
P 

9 

r 

t 

mk 76 

6 V  - 
.a, ,. 
v k  

X 
z 

6 

P 
8 j i  

3 by-3 mat r ix  relating components of 6 1. to components 
of 6 r .  when 6 r .  is constazt 
3-by- 6 mat r ix  relating components of 6 v 
of 6 e  - 
3-by-3 mat r ix  relating components of 6 r 
of 6 rk when 6 7, 

mean angular motion 
3- by-3 mat r ix  relating com,ionents of 6 r 
of 6 v 

N -by-N zero  mat r ix  
distance along f i rs t  axis of reference t ra jectory flight 
path coordinate sys tem 

distance along second ax is  of reference t ra jectory flight 
path coordinate sys tem 

magnitude of position vector on reference t ra jectory 
position vector  on reference t ra jectory 
variation in position vector 
variation in iner t ia l  acceleration vector  
6-by-3 mat r ix  relating components of 6 
of 6 r when I’ v is constant 

3 -by-3 mat r ix  relating components of 6 v 
of 5 r when 6 y is constant 

time 
time of perihelion passage for  re ference  t ra jectory 

1 
-J -1 

to components 

to components 

-m 

-m is constant - k - 

to components -m when 6 - rLi i s  constant -k 

components 
-- I< - 1i 

to components - m 
- k  k 

3-by-3 mat r ix  relating components of 6 v 
of b v when 6 r is constant 

variation in velocity vector  

6-by-3 mat r ix  relating components of 6 - e to  components 
of 6 vk when 6 r 
s i x  component vector  consisting of 6 y  and d v_ 
simplifying factor ( s e e  section 1 2 )  

distance along axis  normal  to re ference  t ra jec tory  plane 

operator indicating the f i r s t  variation 
gravitational constant in sun’s  gravitational f ield 

state transit ion matr ix;  6- by-6 m a t r i x  relating components 
of d x .  to components of 6 x 

t o  components -m 
-k -k  

i s  constant - -k 

- 3  -i 
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6 4  longitude of perihelion of actual t ra jec tory  relative to  
perihelion of reference t ra jec tory  

W latitude of perihelion of reference t ra jec tory  
6 0  angle, in reference t ra jec tory  plane, between positive 

half of semi-major  axis and positive half of line of nodes 

2. 1NTR.ODUCTION 

The purpose of this repor t  is to present  in handbook fo rm 

the analytic expressions for the two-body linear guidance mat r ices .  
These mat r ices  a r e  the solution to  the two-body var iant  equations 

of motion. 
dependent var iables ,  namely the ell iptical  eccentr ic  anomaly, 

the hyperbolic eccentric anomaly, and the t r u e  anomaly. For the 
eccentric anomaly, it is necessary to have two sets of matrices, 
one of which applies to  ell ipses and the other to hyperbolas,  
ever ,  since t rue  anomaly is defined in the same  way for both 
el l ipses  and hyperbolas, the set of matrices expressed  in  terms 
of that variable is applicable t o  both types of orb i t s  without mod- 
ification. 
done by Stern in  Reference 6. 
w e r e  verified numerically on a digital computer.  

Each mat r ix  is written in t e r m s  of each  of three  in- 

How- 

The mater ia l  presented here  is an extension of the work 
The analytic f o r m s  of the ma t r i ces  

3. PATH DEVIATION VECTORS 

The variant equations of two-body motion can be written 
as foiiows: 

where 

The solution of these equations contains s ix  integration constants 
which may be  considered as a six-component path deviation vector .  

This  vec tor  defines the difference between the vehicle 's  actual 

t ra jec tory  and the reference t ra jec tory ,  Three  possible path de- 
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viation vectors are 

, 

which represents  the three  components of position variation and 
the three components of velocity variation at t ime t i' 

which represents  the three  components of position variation at  

t imes  ti and t 
j '  

( 3 )  { 62 } 
which represents  the variations in a se t  of s ix  orbi ta l  e lements .  
The f i rs t  path deviation vector is called the s t a t e  vector  and may 
be written as 6 xi, - 
4. SOLUTIONS O F  THE VARIANT EQUATIONS OF MOTION 

The var ious path deviation vec tors  may be related to 
each other  a s  follows: 

(4-3) 



where 

&,, 9, .I. 

and $1 are  6-by-3 ma t r i ces  whose subscr ip ts  indicate the 

relevant times. 

The variation in position may be  calculated from 

, 

where 
.L 

& and & are  3-by-3 mat r ices ,  and F is a 3-by-6 mat r ix .  

The variation i n  velocity may be  obtained from 

a .J 

mk m k  -?k 

(4-4) 

(4- 5) 

(4-7) 

(4-8)  

(4- 9) 

(4-10) 

(4- 11) 

(4- 1 2 )  

(4- 13) 

(4-14) 

(4-15) 
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where . . 

- 
8 and ?' a r e  3-by-3 mat r ices ,  and f, is a 3-by-6 ma t r ix ,  

Since 

and 

then 

where 

(4- 16) 

(4-17) 

(4-13) 

(4- 19) 

'mk 

mk mk s 
> (4-20) 

.L a,. 

is known a s  the s ta te  transit ion matr ix .  It re la tes  the s ta te  
?nk 
at t ime tm to the s ta te  at  t ime tk .  

5. USEFUL GUIDANCE EQUATIONS 

The following equations a r e  helpful in two-body guidance 

problems: 

(5- 3 )  

(5- 4) 

The 3-by-3 matr ices  5 and k may a lso  be used to compute velocity 

correct ions a s  explained in Volume 11, Appendices L and M of 

1 2  



.b .a, 

Reference 6 .  They are related to  $1 and N by the equations 

and 

.c 

It is shown in Reference 6 that 5 is a symmetr ic  matr ix .  

6 .  PROPERTIES OF THE STATE TRANSITION MATRIX 

Since 

then 

and 

.a. :# -,. 

.b 
I,, :I: 

6 
e.. @. . = f 
J1 1J 

It is shown in Reference 1 that 

( 5 - 5 )  

( 5 - 6 )  

( 6 - i )  

( 6 - 2 )  

( 6 - 3 )  

(6 -  5 )  

1 3  



‘Therefore, the state transit ion mat r ix  .t, 
can be invcrted by inspection 

A s  a consequence of the fact th2t Qji is symplectic,  the determinant 

of @ . .  is equal to -1-1. 

7 .  MATRIX CE1ECKS 

I C  

.t, -0- 

1’ 

Listed below are cer ta in  ma t r ix  equations which a r e  

useful in the detection of e r r o r s .  

( 7 - 1 )  

( 7 - 2 )  

(7-  3 )  

( 7 - 4 )  

(7- 5) 

(7-6) 

(7-7) 

( 7 - 8 )  

( 7 - 9 )  

( 7 -  10) 

(7 -  11) 

( 7 -  12 )  

As a consequence of Kcis ( 4 - 2 0 )  and ( 6 - 6 ) ,  the  following ma t r ix  >:c - 1 ::: - 1 :k :;< - 1 ::c 1. I:( 

products are symmetric:  Mlnlt :$ 8 mk ,Nm,<Tmk , hJmk Mmk,Tmk smk> 

8 THE COOR.DINATE SYSTEM 

The coordinate sys t em used in th i s  presentation is the 

reference t ra jectory flight path coordinate sys t em whose axes  a r e  
labeled p,  q, and z. The origin of the sys t em is the cen te r  of the 
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. 

cent ra l  body being considered. 

direction of the angular momentum vector of the vehicle 's  motion 
about the cent ra l  body, and the p-q plane is the reference t ra jectory 
plane. 
vector of the vehicle 's  nominal motion with respect  to the cent ra l  
body. See 
Fig.  1. 

The positive z-axis i s  in the 

The positive q-axis is paral le l  to the relative velocity 

The positive p-axis is 00' behind the positive q-axis .  

The pqz sys tem w a s  chosen because the ma t r ix  elements 
are s impler  than those expressed in any of the other  sys t ems  
cons ide re d . 
9. THE INDEPENDENT VARIABLE 

Three  independent var iab les  have been considered: 
1. the elliptical eccentric anomaly, 2 .  the hyperbolic eccentr ic  
anomaly, and 3 .  the t rue  anomaly. The guidance ma t r i ces  
written in t e r m s  of these independent var iables  can be found in 
Appendices A ,  R ,  and C ,  respectively.  When t rue  anomaly is 
used, all secular  t e r m s  contain the t ime t in addition to  the t rue  
anomaly, 

10. 0REITA.L E L E M E N T S  

The grouping of orbital  elements used in the path devia- 
tion vector  d e is a s  follows: 

6 a la  

d e  

6 4  

d i  cos  b G! 

b i  s in 6 R 

(10- 1) 
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J 

HE F E  HE NC E 

X 

F - attractive focus 
T - vehicle position on reference trajectory 

- position vector 
- v - velocity vector 

p, q - flight path coordinate axes 
x, y - stationary system coordinate axes 

Fig. 1 Flight path coordinate sys tem.  
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I .  
The angles 6 R , 6 i ,  and 6 4 re late  the axes of the actual t ra jectory 
to the axes of the reference t ra jectory.  
of the actual t ra jectory.  
and the line of nodes and 6 i is the angle between the z and z '  axes.  
6 4 = 6 ( w  + R), see  Fig. 2. Since 6 R i s  not necessar i ly  small ,  

cos  d Rand sin 6 52 a r e  used instead of 6 R in the path deviation 

vector 

Let p '  q1 z 1  be the axes 
Then d R i s  the angle between the p-axis 

11, RELATIONSHIPS USED 

The guidance mat r ices  written in t e r m s  of the elliptical 

eccentric anomaly a r e  derived in Reference 5. The mat r ices  
expressed in t e r m s  of the t rue anomaly may be obtained from 
those of Reference 5 by the substitutions 

(1 - e") s i n  f s in  E = 1 + e cos f 

cos . f  + e ,  
' O s  E = i + e ' cos f  

(11-1) 

(11 -2 )  

The secular  t e r m  E is derived from Kepler 's  equation and 

EQ (11-1) 

The mat r ices  written in t e r m s  of the hyperbolic eccentric 

anomaly a r e  easily obtained f r o m  those written in t e r m s  of the 
elliptical eccentric anc?lrraly by the folloy;ing substitutions: 

E + i F  

s in  E --c i (sinh F) 

cos E --c cosh F 

h 

i a 2  ( e 2  - 1) 
112 n =  

17 

(11-3) 

(11-4) 

(11-5) 

(11-6) 



I 
L 

\ 

I /- \ I/  / /' \ I/ / 

F -  
AN - 
DN - 

Pqz - 
p 'q 'z '  - 

bR - 
6 i  - 
6~ - 

origin a t  cen ter  of cent ra l  body 
ascending node 

descending node 
re ference  t r a j e c t o r y  pqz s y s t e m  
actual  (var ian t )  t ra jec tory  pqz s y s t e m  
longitude of ascending node 

inclination of actual t r a j e c t o r y  p lane  
lati tude of perihelion of actual  t r a j e c t o r y  

Fig. 2 Orientation of actual t ra jectory t o  re ference  t ra jectory.  
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where i = ,,/T 
1 2 .  SIMPLIFICATION SUBSTITUTIONS 

The following equations a r e  used to simplify the mat r ix  
e xp r e s  s ions : 

(12-1)  

( 1 2 - 2 )  

1 1 

1 1 

1 1 

E p  = y ( E j  + E . )  1 EM = T ( E ~  - Ei) 

Fp  = H ( F .  J + Fi) FM = F ( F ~  - Fi) 

(12-3) fM = - ( f .  - f i )  f p  = - ( f  + f i )  
2 j  2 J  

where the subscr ipts  M and P r e f e r  to  "minus" and "plus", res- 
pectively. X is defined by 

XE = (3EM - e s i n E  c o s E  ) ( c o s E  + e cos EP) - 4 s i n E  (12-4) M P M M 

XF = (3FM - e sinh FM cosh F ) (cosh FM + e cosh FP) - 4s inh  FM 
P 

(12-5) 
2 

2 + ecosfM)l [ (1 + e ) c o s f M  
2 e ( l  - e ) s in f  ( cos fp  M 

(1 t e c o s f i ) ( l  + e c o s f . )  
J a 

where the subscr ipts  on X r e f e r  to the independent variable used 
and tM = 1 ( t j  --ti). 

13. APPLICATIONS 

The guidance mat r ices  in this  handbook have a two-fold 

purpose. 
two-body variational problem. 
programmed on a digital computer for numerical  investigations. 

F i r s t ,  they a r e  useful in making analytic studies of the 

Secondly, they can be readily 
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ERRATA 

p. 5, Appendix A begins on p.  21, not p. 19; Appendix B be- 
g ins  on p. 33, not p. 31; Appendix C begins on p. 45, 
not p. 43; and References begin on p. 57, net p. 55. 

Eq. (12-2) for mEj,88 read p. 198 

p. 248 The coef f ident:  of the first collumn should read 

0 1-2 sinh 2 F4 N 

p. 39, In the element M33 for 

pa 40, In the denominator of the coefficient of the 2x3 block, 
for "(e cosh F 1)1'2" read "(e cosh F 

The third term in the denominator of the coefficient 
of the 2x3 block is  "(e cosh Pi- 1) 

Insert "0" for element J13. 
factor of element J33, for 

2 2 ' 2 1)1/2u. 
j- 3' 

p. 41, 
2 2 1/2 

0 

p. 43, In the denominator of the 
sinh FM(cosh FM-e cosh Fp) 



. 

P. 478 

P. 4% 

P. 49, 

P. 51, 

P* s28 

p. .53, 

P* 54, 

(e 
In  
as 

I n  

ta 
cosh Fi- 1)" read "2 sinh FM(cosh FM- e cosh FP)l(. 
the unbound version p. 43 i s  incorrect ly  nunbred 

the  factor of element R21 for "(li-t3 c o ~ f ) ~ ] "  read 

p. 52. 

.. 
I n  the denominator of the S8~0nd Zine of t h e  €actor 

2 2 2 of elemwqt for "2aIZ - e ) "  read "2a (1 - e )". 

I n  the numerator of the factor of e2-t P12 for 
"[-2e + (1 + e ) cosf]" read "-[2e + (l+e2) cosf]". 

-. 
2 

In the second l i n e  of the factor of element %&8 for 
"(e cosfMn read "(cosfM". In the element M33 for 

48 
2 2 s i n  f 2 "1-2 sin fMn 

read "1 - (l+e cot f.) 3 I* C08 f 

The coef f ic ien t  o f  the 2x3 block i s  

N 1 N 

In  the numerator of the factor of element N218  for 
2 2 2" "-2(1 0 e 1'' re* "-2(l 0 e 1 In  the version 

p. 34 -- lS - L x ~ w L * o r r r ~  2-------+1v ----- nt*red as Q. #3* 

In the  nunrezator of the l as t  l i n e  o f  the factor of 
element for "(e + cosfi)" read "(e + cosf )". 
A t  the end of the t h i r d  l i n o  of the factor  of elerneat 

s22@ 
In  the numerator of t h e  second l i n e  of the  factor of 
element TI28 for 812e2*t read ~ e " .  The factor of ele- 
ment T12 i 8  

J 

i n s e r t  e brace H .  ;". 

2 2 ( l+e  cosfi)2 f 3htM(1 + e cos f i )  (1 + e 
i 

+ 2e cosfF) 

i (1 - e2I2 2 2 a ( 1 - e  ) 



(cosf, + e cos f&e + cosfi) 
+ 

(1 + e C0Sfi) 

- 2 sinfM(cosfN + e cosfp) 

2 2 .  e(1 - e ) (cosf i  + e) + (I + e cosf.) 

(1 + e cosf l 2  
4 

3 

The factor of element TZ2 3.8 

m 2 2(1+e cosfij2 '1 (1- +2e cosfi)e sing 2 
i (1- +2e cosfi) + 

( 1 - e  1 ((Ne c0Sfi)(l+e cosf j ) 

p. 55,  The second term in  the factor of element JZ2 is 

" -  e sinf,(1 + e cosfi)' . n  

(1 - e*) 
p. 56, The first term in the second l i n e  of  the factor of 

element Kll i s  I' 3 h s  I D  

a 2 (1-e 2 ) sinfEi 


